A similar genre appeared in the Omopa section of Puzzle Communication Nikoli 164, as テ卜ロカインスソ. The main difference is that clues are allowed at the puzzle border. This is supported by the current implementation.


##[kindomino] Puzzles

### @NaokiInaba

These are the original puzzles by @NaokiInaba.

Example: 
W=4x4&L=(3)12(2)7(1)11&SSE=5UUURDRUR3U7ULU&G=kindomino&A=Naoki_Inaba&B=PinkHoodie&D=2006-02-08&N=1&T=カインドミノ_(Example)

Set:
W=6x6&L=(3)17(4)10(3)30(2)10&SSE=3RDDRRRRR7U4UURULULURU4RURU11URULL9UR1LU&G=kindomino&A=Naoki_Inaba&B=PinkHoodie&D=2006-02-08&N=2&T=カインドミノ
W=8x8&L=(1)18(4)3(1)3(3)17(3)62(2)17(3)3(3)3&SSE=1RURULUURRUL3RRRRRURDR2RRUU19RRDRUU2ULURRULU1RRR4RRURURDDDDR7RRU7UU17ULURU7R&G=kindomino&A=Naoki_Inaba&B=PinkHoodie&D=2006-02-08&N=3&T=カインドミノ
W=10x10&L=(1)22(2)3(2)2(2)2(2)17(3)4(3)14(2)5(3)3(2)15(2)1(2)2(2)16(3)8(3)16(3)2(2)1(3)15(1)3(3)5(1)14(2)4(3)17(3)2(1)2(2)3&SSE=1RURDRD3RDRD3RDRDLD11RULUU7URD3RDD1RRDDL1RUU4RR8RRRRU3ULURRRDLDRR5RR1URU26URRU9DDRUUR3ULU4LDLLLU10DDR1LUU1UUUU11LDDLDLLUUURULLU&G=kindomino&A=Naoki_Inaba&B=PinkHoodie&D=2006-02-08&N=4&T=カインドミノ
W=12x12&L=(1)27(3)2(3)5(1)17(2)2(3)2(1)30(2)17(4)5(3)27(2)17(4)5(2)5(2)17(2)27(2)5(2)17(1)30(3)2(1)2(4)17(3)5(3)2&SSE=1RURDRD3RDRDRUULULD2RRR1RRRRULURRULU4RDDRDR9UU4RDRD7R6RRU5RURU10UUUR15DRD5UR2R1URDRR8RRR6RU2UR6URUR9LLLUR7LLDRR7DLDRR8U7LDRRDDLDRD4R12DDLDRR2UU6LLLLLURR5LUULLULDDRRDLDRDLLLLLDLLURURRDDDDR&G=kindomino&A=Naoki_Inaba&B=PinkHoodie&D=2006-02-08&N=5&T=カインドミノ


### @PinkHoodie
W=4x4&L=(3)10(1)2(2)8&SSE=1RURULU5RRR6RUR&G=kindomino&A=PinkHoodie&D=2024-05-02&F=2&T=Kinds_of_Counts
W=16x6&L=(2)4(3)10(3)2(2)16(1)7(3)3(3)2(3)9(3)13(2)1(3)3(4)11(3)24(2)4(4)24(3)11(3)3(3)1(1)13(2)9(3)2(2)3(1)7(3)16(1)2(1)10&SSE=4RRUU4UUU2RRD18UULDLLD8RRRD2UULLU2RRRDLLDDLDL14U3RURUULL2LLLLLUU2RRRU11DRD6RUULUU2LLLDLD1RRUU11RRUR2DDD1RRDLLL7URR5U&G=kindomino&A=PinkHoodie&D=2024-11-19&F=3&T=16x6_1

## Variants

### ´´hex´´
V=hex

W=3x3x3&L=x4(1)14(1)2(2)14(1)4x12(1)2(2)2x2&SSE=10RERDR8ULUEULU32WLWDWDR&G=kindomino&V=hex&A=PinkHoodie&D=2024-05-03&F=3&O=Hex&T=Hex_Closk

### ´´tiles-remove-2´´
V=tiles-remove-2

W=5x6&L=(2)16(4)11(3)3(2)11(1)3(3)11&LF-OBST=r23r1&SSE=14UUUUULDD4RDRDLDLLUUL1U11R1UULU&G=kindomino&V=tiles-remove-2&A=PinkHoodie&D=2024-05-03&F=3&O=Tiles_Remove_2&T=Two_Removed



### ´´full´´
V=full

W=7x5&L=x10x11x11(4)24&SSE=6UUUU9U4ULURRRULU11UULU4RDDDLLLLL5R&G=kindomino&V=full&A=5381&D=2025-03-23&F=3&T=Steak

## Acknowledgements and Changes
**2024-05-02** Thanks to @PinkHoodie for discovering this genre, and for brilliantly making the rule panels (using all 4 tetrominos) and the cover pic, and for suggesting the inclusion of letter aux marks and for a commemorative puzzle!
**2024-05-02** @PinkHoodie kindly transcribed @NaokiInaba's original puzzles!
**2024-05-03** :::puzzletters @PinkHoodie sent 2 puzzles using variants ´´hex´´ and ´´tiles-remove-2´´. The latter changes the logic in such a way that known tetromino locations need to be marked. 
**2024-05-23** A regression whereby inputting numbers was impossible, reported by @PinkHoodie, was corrected (cause: missing dial template)
**2024-06-05** A bug causing unstable encoding of [kindomino] was fixed. Please double-check your puzzles are displayed correctly (cause: incomplete mesh was being generated during encoding, on symbols with corner placements)
**2024-10-07** Thanks @PinkHoodie for finding テ卜ロカインスソ as an alternate name for the [Kindomino].
**2025-01-04** :::puzzletters @PinkHoodie dispatched 1 [kindomino] (classic) puzzle under the 16x6 theme!
**2025-03-29** :::puzzletters @5381 fashioned 1 [kindomino] puzzle using variant ´´full´´!